EEG-based multi-level stress classification with and without smoothing filter

نویسندگان

چکیده

Recently, multi-level stress assessment has become an active research subject. In this context, researchers typically develop models based on machine learning classifiers and features extracted from biosignals like electrocardiogram (ECG) or electroencephalogram (EEG). For that purpose, EEG power spectral density (PSD) is a recurrent feature owing to its high responsiveness remarkable performance. However, PSD usually smoothed cope with bursty nature, what may cause data leakage hence call into question classification study, our aim was twofold: first, examine the effect of EEG-PSD smoothing in three-level classification, second, evaluate practical viability two-level detector without smoothing. To end, we conducted participants through stress-relax session while recording their EEG. Then, estimated used reported by as labels for classification. Initially, developed classifier examined We found performance directly proportional intensity (F1-score 0.61–0.94), also when not applied features, insufficient applicability (AUC < 0.7). link behavior train-test contamination due Subsequently, attempted case, met criteria = 0.76). This suggest enhancement caused produced smoothing, hence, render realistic each epoch should be processed individually.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of EEG-based motor imagery BCI by using ECOC

AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...

متن کامل

EEG sensor based classification for assessing psychological stress.

Electroencephalogram (EEG) reflects the brain activity and is widely used in biomedical research. However, analysis of this signal is still a challenging issue. This paper presents a hybrid approach for assessing stress using the EEG signal. It applies Multivariate Multi-scale Entropy Analysis (MMSE) for the data level fusion. Case-based reasoning is used for the classification tasks. Our preli...

متن کامل

Space Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters

Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is &#10its complex and time-consuming computations in real-time ...

متن کامل

Space Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters

Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is its complex and time-consuming computations in real-time im...

متن کامل

Evolutionary Algorithm Based Feature Optimization for Multi-Channel EEG Classification

The most BCI systems that rely on EEG signals employ Fourier based methods for time-frequency decomposition for feature extraction. The band-limited multiple Fourier linear combiner is well-suited for such band-limited signals due to its real-time applicability. Despite the improved performance of these techniques in two channel settings, its application in multiple-channel EEG is not straightf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biomedical Signal Processing and Control

سال: 2021

ISSN: ['1746-8094', '1746-8108']

DOI: https://doi.org/10.1016/j.bspc.2021.102881